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For the solution of fluid dynamics equations,
the Adaptive Mesh Refinement (AMR) method
promises to obtain solutions with less computa-
tional work than classical schemes. The AMR
method is based on a modification of the mesh
structure so that the computational mesh isn
times denser in regions of interest, for example,
near shock waves or contact discontinuities. In
Lagrangian simulations, the AMR method also
allows us to treat problems with rapid decreases
of density in particular regions.

Our objective is to implement refinement and
coarsening operators that can be plugged into the
existing 1D ALE code [1]. After observing the
inherent difficulties of the Lagrangian scheme
[2] in the presence of mesh non-uniformities,
especially near the transition of the shock wave
from a denser mesh to a finer mesh and back
[4], [3], the approach of [5] introduced in Eu-
lerian coordinates, or of the following work in
Lagrangian coordinates [6] was chosen.

We developed a 1D Lagrangian AMR space
and time multi-mesh code. In this code, each
computational mesh can have an arbitrary num-
ber of descendant meshes that are ofn times
higher resolution, wheren is an odd number.

The Lagrangian solver computes the solution
on each mesh from the coarsest to the finest, and
the solution obtained on a given mesh is used as
a boundary condition for all descendants of the
mesh. We developed a C++ code to provide tools
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Typical mesh data structure of the AMR solver,
with 2 levels of refinement.

for multi-mesh computation, which will be easy
to use in further research.

We also designed an error estimator, in the
form of anL2 norm of the difference between the
solution and the piecewise constant reconstruc-
tion, and observed good performance in our tests.
Our refinement strategy was developed using the
method of beams, with satisfying results.
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Internal energy of the LeBlanc problem [7] at
time t = 6. We compare the AMR solution (red
line) and the classical Lagrange solver solution
(green line) computed with the same number of
cells (388 cells). The black line shows the exact
solution. We observe a significant improvement
using AMR techniques.

We did observe difficulties with the shock
injection on the finer mesh, resulting in unphys-
ical discrepancies. This effect can be seen when
an already developed shock is refined onto the
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new mesh, which happens when a number of
refinement levels bigger than 4 are allowed. We
identified the term of artificial viscosity [8] as the
source of the problem, because artificial viscosity
has non-physical, but cell number logical scale.

Based on the results in [8] and [9], we proposed
a solution in the form of a non-conservative shock
reconstruction on the finer mesh. We are further
developing this method in order to overcome the
conservation problem.

We plan to first develop the shock reconstruc-
tion method, and a refinement using even ratios of
mesh resolution, in one dimension. We will then
develop an extension of the algorithm to higher
dimensions and to general polygonal meshes.
I wish to thank my mentors listed above, as well
as Ed Caramana, Shengtai Li, and Robert Ander-
son for their support with my project.
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Shock reconstruction method on a steady-state
shock. Upper figure shows the results when the
shock is injected into the finer mesh without any
reconstruction. Lower figure shows the results
when the shock reconstruction is used.
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